

 Navigation

 	
 index

 	
 next |

 	riss-doc 1 documentation

RISS Documentation

RISS Tutorials and User Documentation

Introduction to MSI resources

	MSI Queues
	Lab Cluster Queues

	Itasca Queues

	Mesabi Queues

	MSI Multiple Groups
	MSI Groups

	Quickstart

	Switching Groups

	Files

	PBS Jobs

	SSH

	Command-Prompt

Software

	SOFTWARE Riss-util Module
	profile.pl

	profiles.pl

	multi-profile.pl

	cleanup

	fastqqualityplot.pl

	insertsize.pl

	insertplot.pl

	fastq-species-blast.pl

	fastq-cat.pl

	redup.pl

	resync.pl

	fasterqc.pl

	tophatplot.pl

	expressiontableplot.pl

	Deprecated scripts

	Support

	SOFTWARE GNU Parallel
	Single-node Examples

	Multi-node Examples

	Additional Resources

Support

If you are having issues, please let us know.
Email help@msi.umn.edu, include RISS in the subject line

 Copyright 2014, RISS.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	riss-doc 1 documentation

MSI Queues

Publically available queues at MSI

	System
	Queue
	Nodes
	Cores/node
	Mem/node
	Walltime
	Running jobs

	lab
	lab (default)
	73
	8-32
	15-128
	72
	6

	lab-long
	?
	8
	15
	150
	6

	lab-600
	?
	8
	128
	600
	1

	oc
	4
	12
	23
	72
	3

	Itasca
	batch (default)
	1086
	8
	22
	24
	2

	devel
	32
	8
	22
	2
	?

	long
	28
	8
	22
	48
	?

	jay
	1
	8
	22
	24
	?

	sb
	35
	16
	64
	48
	2

	sb128
	8
	16
	128
	96
	2

	sb256
	8
	16
	256
	96
	2

	Mesabi
	small (default)
	256
	24
	64
	96
	?

	large (default)
	360
	24
	64
	24
	?

	ram256g
	32
	24
	256
	96
	?

	ram1t
	16
	32
	1000
	96
	?

	k40
	40
	24
	128
	24
	?

Notes:

	Jobs cannot request more than 1 node on the lab queue

	8 nodes in the lab (default) queue have 128G of memory and 16-32 cores per node, the rest (65 nodes) have 15G of memory and 8 cores per node

	Jobs submitted to Mesabi’s default queue automatically routes jobs requesting 10 or more nodes to the “large” queue, and smaller jobs to the “small” queue.

Lab Cluster Queues

The Lab Cluster is the oldest, slowest general-purpose cluster at MSI. All queues on the Lab cluster only allow single-node jobs, but up to six jobs can run simultaneously (per user). The Lab cluster hardware is very old and is not considered a high-performance system. Your jobs will run much faster on Itasca or Mesabi. The “isub” command launches interactive jobs on this cluster (useful for general-purpose command-line work).

	lab (default)

	The is the main queue on the Lab cluster. Many nodes are available, but most are small. Job requesting 15G of memory or less and 8 nodes or less will have much shorter wait times in the queue than jobs requesting >15G memory or >8 nodes

	lab-long

	Useful if your job needs more than 72 hours of walltime

	lab-600

	Useful if your job needs more than 150 hours of walltime

	oc

	A queue for four overclocked nodes, particularily useful for serial (single-core) jobs. Also good for general use since these nodes are much newer than the other Lab nodes

Itasca Queues

Itasca is the second-tier general-purpose cluster at MSI, slower than Mesabi but faster than the Lab Cluster.

	batch (default)

	This is the main queue on Itasca. A huge number of nodes are available, but each node is not particularily powerful. Great for jobs than can make use of many nodes, and for general use

	devel

	This queue is for testing your pbs scripts. It works just like the batch queue, but you are limited to 2 hours of walltime and 32 nodes. The advantage is jobs on this queue have high priority, so jobs should start very quickly

	long

	Useful if your job needs more than 24 hours of walltime

	jay

	A queue for a special high-performance node with a high-speed internet connection

	sb

	Sandybridge queue (64G memory). The Sandybridge nodes are much more powerful than the standard Itasca nodes in the batch queue, but there aren’t very many of them. Great for single-node and smaller multi-node jobs. Large multi-node (>6) jobs tend to have long wait times in the queue. This queue has four times more nodes than the sb128 and sb256 queues, so use this queue unless you need more than 64G memory

	sb128

	Sandybridge queue (128G memory). Refer to sb queue

	sb256

	Sandybridge queue (256G memory). Refer to sb queue

Mesabi Queues

Mesabi is the newest, fastest general-purpose cluster at MSI that also contains some specialized hardware. MSI has not determined how queues will be set up on the new Mesabi system. However, it is likely that the queue structure will be derived from the hardware structure:

	small (default)

	This is the main queue on Mesabi for jobs requesting fewer than 10 nodes. Jobs may request partial nodes (like on the lab queue). A large number of powerful nodes are available. Great for smaller multi-node jobs or for large numbers of small jobs (including single-node, single-core jobs)

	large (default)

	This is the main queue on Mesabi for jobs requesting 10 or more nodes. A large number of powerful nodes are available. Great for jobs than can make use of many nodes.

	ram256 (mid-mem)

	Queue for general-purpose 256G memory nodes

	ram1t (high-mem)

	Queue for general-purpose 1T memory nodes. These nodes have 32 cores per node, so they are also good for jobs that scale well across multiple cores, but can’t make use of multiple nodes.

	k40 (gpu)

	Queue for nodes with NVidia Tesla GPUs, useful for jobs running software capable of using GPU accelerators

 Copyright 2014, RISS.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	riss-doc 1 documentation

MSI Multiple Groups

MSI Groups

Your MSI user account is association with the PI who created the account, known as your primary group. You can have your user account added to additional “secondary” groups as well. This allows you to have access to another group’s files, quota space, and SUs, which is useful if you are working with another PI on a project. To have your account added to Goldy Gopher’s group have Goldy (the PI) email help@msi.umn.edu with a request to have your user account added to the gopherg group.

Quickstart

Add these commands to your .bashrc file (located in your home directory). The rest of this document explains these commands in detail. Replace “gopherg” with the name of your secondary group:

define an environment variable to hold the active group
export MYGROUP=$(id -gn)

group follows along with ssh
function ssg ()
{
\ssh $@ -t "newgrp \- $MYGROUP"
}
alias ssh=ssg

switch groups by typing the name of the group (repeat this line for additional secondary groups)
Replace gopherg with the name of your secondary group!
alias gopherg="newgrp \- gopherg"

make new jobs run as, and bill SUs to, your active group
alias qsub="qsub -A $MYGROUP -W group_list=$MYGROUP"
alias isub='isub -A $MYGROUP -W group_list=$MYGROUP'

Add your active group to your command prompt (and add some color)
GROUP_NAME=$(id -gn)
PS1='${debian_chroot:+($debian_chroot)}\[\033[01;36m\]\u-$GROUP_NAME@\h\[\033[00m\]:\[\033[01;33m\]\w\[\033[00m\]\$ '

Switching Groups

When you log in to MSI your active group is your primary group. To switch to the gopherg group use the newgrp command:

$ newgrp - gopherg

Note

The dash in the newgroup command causes your environment to be reinitialized which bumps you back to your home directory (among other things), but is neccessary for the .bashrc modifications listed on this page to work. If you omit the dash and run “newgrp gopherg” you will stay in your current directory and keep your current environment, but alias definitions are lost.

To make it easier to switch to the group gopherg you can add an alias to your .bashrc:

alias gopherg="newgrp \- gopherg"

Then you can switch to the group just by typing its name:

$ gopherg

To switch back to your primary account type “exit” or press control-d

Files

When you create new files they will be owned by your active group. If your active group is not gopherg and you create files anywhere in gopherg’s group directory the filesystem will immediately change the group ownership of the files to gopherg. This process occasionally fails resulting in a “Disk quota exceeded” error, so it is recommended you first change your active group before creating files in another group’s home directory.

PBS Jobs

PBS jobs submitted with the qsub command draw SUs from your primary account, regardless of what your current active group is. To charge SUs to group gopherg you can use “#PBS -A gopherg” in the pbs script, or add “-A gopherg” to the qsub command line.

PBS jobs execute as your primary group, regardless of what your current active group is. This can result in the job encountering file permission and quota problems. To have a job execute as group gopherg use “#PBS -W group_list=gopherg” in the pbs script, or add “-W group_list=gopherg” to the qsub command line. If you always want jobs to bill SUs to, and run as, your current active group add these lines to your .bashrc file:

export MYGROUP=$(id -gn)
alias qsub="qsub -A $MYGROUP -W group_list=$MYGROUP"
alias isub="isub -A $MYGROUP -W group_list=$MYGROUP"

Note

You can always override aliases and run the original command by adding a “\” at the front of the command when you use it:

$ \qsub script.pbs

SSH

When you use ssh to connect to another MSI computer your active group on the new computer will be your primary group, regardless of what your active group was on the previous computer. To have your active group follow you around add these lines to your .bashrc file:

export MYGROUP=$(id -gn)
function ssg ()
{
\ssh $@ -t "newgrp \- $MYGROUP"
}
alias ssh=ssg

Command-Prompt

The default command-line prompt shows your username. Add these lines to your .bashrc to have the username and active group displayed so it’s easy to see what group you are working in:

Set the command prompt.
GROUP_NAME=$(id -gn)
PS1='${debian_chroot:+($debian_chroot)}\[\033[01;36m\]\u-$GROUP_NAME@\h\[\033[00m\]:\[\033[01;33m\]\w\[\033[00m\]\$ '

 Copyright 2014, RISS.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	riss-doc 1 documentation

SOFTWARE Riss-util Module

Contents

	SOFTWARE Riss-util Module
	profile.pl

	profiles.pl

	multi-profile.pl

	cleanup

	fastqqualityplot.pl

	insertsize.pl

	insertplot.pl

	fastq-species-blast.pl

	fastq-cat.pl

	redup.pl

	resync.pl

	fasterqc.pl

	tophatplot.pl

	expressiontableplot.pl

	Deprecated scripts

	Support

The riss_util module contains a variety of small programs and scripts developed by RISS staff to perform various bioinformatics tasks. The module is available on the lab cluster, Itasca, and Mesabi. To load the module run:

$ module load riss_util

Most of the scripts are written in perl. After loading the module you can view the source code for the scripts at /soft/riss_util/1.0/bin/. If neccessary you can copy a script to your home directory and modify it to suite your needs.

profile.pl

	NAME

	profile.pl - profile the cpu and memory usage of the computer

	SYNOPSIS

	profile.pl [-s seconds] [-h] [-i] [-b bins] [-o logfile]

	DESCRIPTION

	This script collects total memory and cpu usage information for the computer/node it is running on, and when the script is killed it prints ASCII plots to standard output summarizing memory and cpu usage across time. After the plots is a list showing the most active process in each bin in the plots.

	Options:

	

	
-s seconds
	The number of seconds between polling cpu and memory usage

	
-b bins
	The number of bins in the summary histograms

	
-i
	Interactive mode: print update to screen after every poll

	
-h
	Display usage information

	
-o file
	Print output to file instead of STDOUT

	EXAMPLE

	Start profile.pl at the beginning of your pbs script (after loading the riss_util module) and put it in the background using “&”. Check the standard output file (jobname.oXXXXX) for the results:

$ profile.pl &

[image: ../_images/profile-sample.jpeg]

profiles.pl

	NAME

	profiles.pl - Run profile.pl on all nodes allocated to a job

	SYNOPSIS

	profiles.pl [-s seconds] [-h] [-i] [-b bins]

	DESCRIPTION

	Generates memory and cpu usage information for multiple nodes. One nodeXXXX.log file is created for each node allocated to the current job.

	Options:

	

	
-s seconds
	The number of seconds between polling cpu and memory usage

	
-b bins
	The number of bins in the summary histograms

	
-h
	Display usage information

	EXAMPLE

	Start profiles.pl at the beginning of your pbs script (after loading the riss_util module) and put it in the background using “&”:

$ profiles.pl &

multi-profile.pl

	NAME

	multi-profile.pl - profile the cpu and memory usage of a multi-node job

	SYNOPSIS

	multi-profile.pl [-s seconds] [-h] [-i] [-b bins] [-o logfile]

	DESCRIPTION

	Generates one plot summarizing memory and cpu usage across all nodes in a multi-node job

	Options:

	

	
-s seconds
	The number of seconds between polling cpu and memory usage

	
-b bins
	The number of bins in the summary histograms

	
-i
	Interactive mode: print update to screen after every poll

	
-h
	Display usage information

	
-o file
	Print output to file instead of STDOUT

EXAMPLE
Start multi-profile.pl at the beginning of your pbs script (after loading the riss_util module) and put it in the background using “&”. View the profile.png image after the job finishes. The plots use boxplots to show the distribution of memory and cpu usage across all nodes at each timepoint bin. The top plot shows CPU load percentage, which is the number of threads running or ready to run, divided by the number of cores (thus the load can be higher than 100%):

$ multi-profile.pl &

[image: ../_images/multi-profile-sample.png]

cleanup

	NAME

	cleanup - delete all but the most recent pbs.e and pbs.o output files

	SYNOPSIS

	cleanup [-d]

	DESCRIPTION

	Submitting the same pbs script to a queue multiple times results in
many different standard error and standard out files. This script will
delete all of the old files for you, leaving the most recent pair of
files. This script finds all files ending in .pbs.e00000 and .pbs.o0000
and removes all but the most recent (as determined by the job number,
not the file modification dates) .e and .o file for each .pbs file. Run
without any options the script lists which files should be deleted and
which should be kept. Run with the -d option the script will actually
delete files.

	Options:

	

	
-d
	Delete old .e and .o files

fastqqualityplot.pl

	NAME

	fastqqualityplot.pl - Generate per-base quality plot for multiple fastq files

	SYNOPSIS

	fastqqualityplot.pl -f /fastq/folder [-m mappingfile]

	DESCRIPTION

	Generate per-base quality plot for multiple fastq files

	
-f folder
	A folder containing fastq files to process

	
-m file
	Full path to a mapping file

	
-o file
	Name of the output image file (fastqqualityplot.png)

	
-p integer
	Number of processors to use (number of threads to run) (this doesn’t work yet...)

	
-s integer
	Subsample the specified number of reads from each fastq file. 0 = no subsampling

	
-h
	Print usage instructions and exit

	
-v
	Print more information while running (verbose)

	EXAMPLE

	Run the script:

$ fastqqualityplot.pl -f /home/msistaff/public/garbe/sampledata/RNAseq/Hsap/fastq/ -s 4000 -o fastqqualityplot-sample2

[image: ../_images/fastqqualityplot-sample.png]

insertsize.pl

	NAME

	insertsize.pl - Calculate the insert size mean and standard deviation of a paired-end dataset

	SYNOPSIS

	insertsize.pl [-m 1] bowtieindex R1.fastq R2.fastq

	DESCRIPTION

	Calculate the insert size mean and standard deviation by aligning some reads from a pair of fastq files to a
bowtie2 index

	
-b bowtieindex
	A Bowtie2 index

	
-m integer
	The first N million reads from the fastq files will be aligned (Default 1)

	
-p integers
	Number of threads to use (Default $PBS_NUM_PPN or 1);

	
-h
	Print usage instructions and exit

	
-v
	Print more information while running (verbose)

	EXAMPLE

	Run the script:

$ insertsize.pl bowtieindex R1.fastq R2.fastq

Runtime: 15 seconds using “-m .1 -p 8” on Itasca, 102 seconds using “-m 1 -p 8” on Itasca

insertplot.pl

	NAME

	insertplot.pl - generate a fragment-length plot from Picard output

	SYNOPSIS

	insertplot.pl insert_summary1.txt [insert_summary2.txt ...] insertplot.pl -f filelist.txt

	DESCRIPTION

	Generate a plot summarizing multiple Picard-tools insert-size-metrics output files. R is required, as well as
the R package ggplot2.

	Options:

	-f filelist.txt : provide a file with a list of picard insert-size-metrics output files, one per line. A

	second tab-delimited column may be included containing sample names

	-h : Print usage instructions and exit
-v : Print more information whie running (verbose)

	EXAMPLE

	Generate a plot from six different picard output files:

$ cd /home/msistaff/public/garbe/sampledata/RNAseq/Hsap/analysis
$ insertplot.pl heart.1/insertmetrics.txt heart.2/insertmetrics.txt heart.3/insertmetrics.txt skeletal.1/insertmetrics.txt heart.2/insertmetrics.txt heart.3/insertmetrics.txt

[image: ../_images/insertplot-sample.png]

fastq-species-blast.pl

	NAME

	fastq-species-blast.pl - Given a fastq file, blast a sample of the
sequences and count how many hits there are to each species.

	SYNOPSIS

	fastq-species-blast.pl [-n number_of_sequences_to_blast] [-t
num_threads] [-d blast_database(s)] input.fastq

	DESCRIPTION

	fastq-species-blast.pl can be used to blast a small number of fastq
reads against a BLAST database in order to determine what species the
fastq file contains, and if there are significant amounts of
contaminating sequence from other species. The -n option is used to
specify how many reads from the input.fastq file shoule be BLASTed
(default is 10). The -t option specifies how many processor cores to
use (default is 1, this script cannot run across multiple nodes). The
-d option specifies which BLAST database to use (default is htgs). Any
database installed with the local NCBI Blast installation can be used
(the taxdb must be installed). Multiple databases can be blasted
against: fastq-species-blast.pl input.fastq -d “human_genomic vector”

	EXAMPLE

	Blast 10 fastq sequences (the default) against the htgs database (the default):

$ fastq-species-blast.pl
/home/msistaff/public/garbe/sampledata/RNAseq/Hsap/fastq/heart-1_R1.fastq
6 out of 10 sequences (60%) have a hit in the htgs blast database
 Common name Scientific name # of sequences
 grivet Chlorocebus aethiops 1
 cattle Bos taurus 1
 white-tufted-ear marmoset Callithrix jacchus 1
 human Homo sapiens 3

fastq-cat.pl

	NAME

	fastq-cat.pl - Concatenate FastQC files

	SYNOPSIS

	fastq-cat.pl /fastq/folder

	DESCRIPTION

	This script identifies samples spread across multiple fastq files and generates cat commands to concatenate
them together. Symlink commands are generated for single-file samples. This script only generates the
commands to concatenate and link files. Run “fastq-cat.pl FOLDER | bash” to generate the concatenated and
linked files.

Options:

	
-f FOLDER
	Folder containing fastq files

	EXAMPLE

	Create a directory to contain the concatenated files:

$ mkdir fastq-cat
$ cd fastq-cat

Generate the concatenation commands:

$ fastq-cat.pl ~/fastq-files > fastq-commands.txt

Execute the concatenation commands:

$ bash fastq-commands.txt

redup.pl

	NAME

	redup.pl - Remove exact duplicate reads from paired-end fastq files

	SYNOPSIS

	redup.pl [-n N] sample1_R1.fastq sample1_R2.fastq > topdups.fasta

	Options:

	

	
-n integer
	Print out this many of the most duplicated sequences

	
-h
	Display usage information

	DESCRIPTION

	This script removes duplicate paired-end reads from the input files sample1_R1.fastq and
sample1_R2.fastq and prints out unique reads to the files sample1_R1.fastq.unique and
sample2_R2.fastq.unique. Reads must have the exact same sequence to be called duplicates,
quality scores are ignored. The top N (default 20) most duplicated sequences are printed out
in fasta format, making it convenient for using BLAST to identify them.

resync.pl

	NAME

	resync.pl - Resynchronize a pair of paired-end fastq files.

	SYNOPSIS

	resync.pl sample1_R1.fastq sample1_R2.fastq [sample1_R1_synced.fastq
sample1_R2_synced.fastq]

	DESCRIPTION

	Programs that process paired-end fastq files usually require that the Nth read in the
R1 fastq file and the Nth read in the R2 fastq file are mates. Using trimming or
filtering programs that aren’t paired-end aware often results in reads being removed
from one paired-end fastq file but not the other, resulting in “unsyncronized” files.
This program reads in two unsynchronized fastq files and writes out two synchronized
fastq files. The synchronized files have properly paired reads, with singleton reads
removed. Casava 1.7 and 1.8 read ID formats are supported. This program shouldn’t use
much memory (<1GB), but maximum memory use could be equivalent to the size of one input
file in a worst-case scenario.

	Options:

	-h : Display usage information
-s : Save singletons to .singleton files

fasterqc.pl

	NAME

	fasterqc.pl - Combine FastQC output images

	SYNOPSIS

	fasterqc.pl [-s 100] [-o fasterqc.png]

	DESCRIPTION

	This script combines FastQC output images into one large png image to make it easy to quickly
assess the FastQC output from many samples. When FastQC is run it generates a zip file named
SAMPLENAME_fastqc.zip. Run this script in a folder containing one or more of these
SAMPLENAME_fastqc.zip files and it will generate a single image containing all of the FastQC
images from all samples. It also prints out the “overrepresented sequences” for each sample to
the file fasterqc.overrep.txt. Recommended maximum number of fastqc folders is 50. This script
works with older and newer versions of FastQC, but won’t work with a mix of old and new
version FastQC output files.

	Options:

	

	
-s percent
	Scale the final image by the specified percent (valid range 5-100, default 100). Files larger than 5000 pixels wide are automatically scaled to 5000 pixels wide

	
-o file
	Save the final image in the specified file (default fasterqc.png)

	EXAMPLE

	Consolidate the results from 12 FastQC runs into one tiny image:

$ cd /home/msistaff/public/garbe/sampledata/RNAseq/Hsap/fastq/fastqc
$ fasterqc.pl -s 10 -o fasterqc-sample.png

[image: ../_images/fasterqc-sample.png]

tophatplot.pl

	NAME

	tophatplot.pl - Generate plots from tophat align_summary.txt output
files

	SYNOPSIS

	tophatplot.pl align_summary1.txt [align_summary2.txt ...]
tophatplot.pl -f filelist.txt

	DESCRIPTION

	Generate a plot summarizing mapping percentage for multiple samples

	Options:

	

	
-f file
	Provide a file with a list of align_summary.txt files, one per line. A second tab-delimited column may be included containing sample names. A third column may be included containing bam files from mapping unmapping reads against a spike-in control reference

	
-h
	Display usage information

EXAMPLE

[image: software/alignments-pairs.png]
[image: software/alignments-pairs-pct.png]

expressiontableplot.pl

	NAME

	expressiontableplot.pl - Given a table of expression data, generate a
series of summary plots including:

-MDS plot
-Dendogram
-Expression distribution violin plots
-Expressed genes plot

	SYNOPSIS

	expressiontableplot.pl data.txt

	DESCRIPTION

	Generate a series of plots summarizing a table of expression data. The
input file should be tab delimited with a header. There should be a row
for each feature (gene, transcript, exon, etc), and a column for each
sample. The first row should contain sample names and the first column
feature IDs.

	Options:

	

	
-n
	Normalize expression values: 75% quartile normalization

	
-m integer
	Minimum expression value

	
-t string
	Feature type (gene, transcript, exon, etc)

	
-h
	Display usage information

	
-v
	Verbose output

EXAMPLE

[image: software/expressedplot.png]
[image: software/expressiondistributionplot.png]
[image: software/dendogramplot.png]
[image: software/mdsplot.png]

Deprecated scripts

These scripts are no longer supported:

	tophatstatsPE.pl:

		Tophat now produces a file name align_summary.txt containing alignment statistics. Use tophatplot.pl to summarize multiple align_summary.txt files

	cuffplot.pl:	Use cuffdiffplot.pl instead, it genreates more plots and uses ggplot2 instead of gnuplot

	cuffdiff2_mds_plot.pl:

		Use cuffdiffplot.pl instead, it generates an mds plot as well as several other useful plots

Support

There is a discussion thread for the riss_util module in the MSI google group: https://groups.google.com/a/umn.edu/forum/#!categories/msi-user-questions/software
Updates and changes to programs in the riss_util module are posted to the thread, and you may post feature requests or bug reports to the thread. You may also email RISS at help@msi.umn.edu

 Copyright 2014, RISS.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	riss-doc 1 documentation

SOFTWARE GNU Parallel

GNU Parallel is a great tool for executing commands in parallel on one or more nodes. If you put all of your commands in a file named commands.txt you can have GNU Parallel dynamically distribute the commands across all of the nodes and cores that were requested by a pbs job.

Single-node Examples

You have a file named commands.txt containing a list of commands and want to run one command per core:

$ module load parallel
$ parallel < commands.txt

GNU Parallel automatically identifes the number of cores on the node and runs one command per core. Use the –jobs option to specify a different number of concurrent commands:

$ module load parallel
$ parallel --jobs 2 < commands.txt

You want to run the same command (FastQC) on many (fastq) files, running one command per core:

$ module load parallel
$ module load fastqc
$ find ~/fastqfolder -name *.fastq | parallel "fastqc {}"

You want to run the same command (wc -l) on many files, running one command per core, saving the output to files named EXAMPLE.fastq.out in the same directory as the fastq files:

$ module load parallel
$ find ~/fastqfolder -name *.fastq | parallel "wc -l {} > {}.out"

You want to run the same command (wc -l) on many files, running one command per core, saving the output to files named EXAMPLE.fastq.out in a different directory:

$ module load parallel
$ find ~/fastqfolder -name *.fastq | parallel "wc -l {} > ~/output/{/}.out"

You want to run the same command (wc -l) on many files, running one command per core, saving the output to files named EXAMPLE.out in the current working directory:

$ module load parallel
$ find ~/fastqfolder -name *.fastq | parallel "wc -l {} > {/.}.out"

Multi-node Examples

If you pass GNU Parallel a file with a list of nodes it will run jobs on each node. The PBS environment variable PBS_NODEFILE points to a file that lists all nodes allocated to the current job, however each node is listed once for each core on the node. Therefore you need to either tell GNU Parallel to run one job per node, or remove duplicate node names from the node file.

You have a file named commands.txt containing a list of single-threaded commands and want to run one command per core on multiple nodes:

$ module load parallel
$ parallel --jobs 1 --sshloginfile $PBS_NODEFILE --workdir $PWD < commands.txt

Which is equivalent to:

$ module load parallel
$ sort -u $PBS_NODEFILE > unique-nodelist.txt
$ parallel --sshloginfile unique-nodelist.txt --workdir $PWD < commands.txt

You have a file named commands.txt containing a list of multi-threaded commands and want to run one command per node on multiple nodes:

$ module load parallel
$ sort -u $PBS_NODEFILE > unique-nodelist.txt
$ parallel --jobs 1 --sshloginfile unique-nodelist.txt --workdir $PWD < commands.txt

Loading modules

Multi-node jobs are a little tricky because the remote nodes do not inherit the environment from the head node, so any modules loaded by the pbs script won’t be present on the remote nodes. Also, the module command is really just a shell alias, and aliases don’t work in the non-interactive bash sessions that are created on the remote nodes. One workaround is to include this environment variable defenition in your PBS script after you have loaded your modules, but before you run GNU Parallel:

$ module load parallel
$ module load another_module
$ export PARALLEL="--workdir . --env PATH --env LD_LIBRARY_PATH --env LOADEDMODULES --env _LMFILES_ --env MODULE_VERSION --env MODULEPATH --env MODULEVERSION_STACK --env MODULESHOME --env OMP_DYNAMICS --env OMP_MAX_ACTIVE_LEVELS --env OMP_NESTED --env OMP_NUM_THREADS --env OMP_SCHEDULE --env OMP_STACKSIZE --env OMP_THREAD_LIMIT --env OMP_WAIT_POLICY"
$ parallel --jobs 1 --sshloginfile $PBS_NODEFILE --workdir $PWD < commands.txt

Additional Resources

GNU Parallel man page [http://www.gnu.org/software/parallel/man.html].

GNU Parallel Tutorial [http://www.gnu.org/software/parallel/parallel_tutorial.html].

 Copyright 2014, RISS.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	riss-doc 1 documentation

Index

 Copyright 2014, RISS.
 Created using Sphinx 1.3.5.

 _static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

msi/msi-command-line.html

 Navigation

 		
 index

 		riss-doc 1 documentation »

MSI Command-line

Documentation for connection to MSI via ssh and running software and submitting jobs from the command line

Connecting to MSI

Connect to MSI using ssh:

$ ssh jdoe@login.msi.umn.edu
$ isub

Computing Environment

Bash commands:

$ ls
$ mkdir newfolder
$ cd newfolder

Writing a PBS script

Create a PBS script using emacs:

$ emacs myscript.pbs

Add contents:

PBS -l walltime=24:00:00
PBS -m jdoe@umn.edu

Submitting a PBS job

$qsub myscript.pbs

or:

$ qsub -q sb128

Managing PBS jobs

$ qstat -a
$ showq

 © Copyright 2014, RISS.
 Created using Sphinx 1.3.5.

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

search.html

 Navigation

 		
 index

 		riss-doc 1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, RISS.
 Created using Sphinx 1.3.5.

template.html

 Navigation

 		
 index

 		riss-doc 1 documentation »

RISS Documentation

$project will solve your problem of where to start with documentation,
by providing a basic explanation of how to do it easily.

Look how easy it is to use:

import project
Get your stuff done
project.do_stuff()

Features

		Be awesome

		Make things faster

Installation

Install $project by running:

install project

Contribute

		Issue Tracker: github.com/$project/$project/issues

		Source Code: github.com/$project/$project

Support

If you are having issues, please let us know.
We have a mailing list located at: project@google-groups.com

License

The project is unlicensed.

 © Copyright 2014, RISS.
 Created using Sphinx 1.3.5.

_images/profile-sample.jpeg
Starting profiler...
Running on computer noded176

8 CPUS available

23.5 GB total usable physical memory

Profile Sumary -

Memory usage: m = used (6 minutes per bin)
23.5 GB total usable physical memory
Memory Usage %: Median: 33.1 Max: 83.7

s's sss 100%
sssssss. 95%
ssssssss. 9%
usssusss 8%
[8%
e 75
e 0%
[65%
[60%
v, 55%
[So%
v a5%
v s 3% s 4%

v s's ssss s s 3%
v s s s ssssoss s 3%

UUUUUUUUUUUUUUUUUUUUUUUUS S S SSSSSSSSSSSSSSSSSSSSS5555555555 25%

UUUUUUUUUUUUUUUUUUUUUUUUUS SSSSSSSSSSSSSSSSSSSSSSUSSSSSSSSSS 208

UUUUUUUUUUUUUUUUUUUUUUUUUS SSSSSSSSSSSSSSSUSSSUUSUUSSSSSSUSS 15%

UUUUUUUUUUUUUUUUUUUUUUUUUUS SSSSSSSSSSSUS SUSSSUUSUUS SSUSSUSS 10

UUUUUUUUUUUUUUUUUUUUUUUUUUUS SSUS SSSSSSUS SUS SSUUSUUS SUUSSUSS 5%

3

| | | | | |
CPU usage: u = user, s = system, w = waiting (6 minutes per bin)
8 CPUS available
Load %: Median: 25.2 Max: 217.5

Most active process in each histogram bin
Bin process

1 /usr/bin/perl -w /soft/riss_util/1.0/bin/fastaqC.pL /panf:
2 Jusr/bin/perl -w /soft/riss_util/1.0/bin/fastqQC.pl /panf:
3 Jusr/bin/perl -w /soft/riss_util/1.0/bin/fastqQC.pl /panf:
4 /panfs/roc/itascasoft/tophat/2.0.11/bin/prep_reads --min-c

_static/up.png

_images/fasterqc-sample.png
R R e e

WWWWWMWWWWWW%

G e e

AL R ERE RN

I e e e e ey

_images/insertplot-sample.png
ssssss

_images/multi-profile-sample.png
MMMMM

a0 100 oo

software/tophat.html

 Navigation

 		
 index

 		riss-doc 1 documentation »

Tophat Documentation

$project will solve your problem of where to start with documentation,
by providing a basic explanation of how to do it easily.

Look how easy it is to use:

import project
Get your stuff done
project.do_stuff()

Features

		Be awesome

		Make things faster

Installation

Install $project by running:

install project

Contribute

		Issue Tracker: github.com/$project/$project/issues

		Source Code: github.com/$project/$project

Support

If you are having issues, please let us know.
We have a mailing list located at: project@google-groups.com

License

The project is unlicensed.

 © Copyright 2014, RISS.
 Created using Sphinx 1.3.5.

_images/fastqqualityplot-sample.png
Sample

h— _ -

e _ -

h— _ - .
b _ _
i _ _
b _ _

S @ a an @ S @ E] an K

Moan
Quaity

'm
En
28

a

tutorial/galaxy-101.html

 Navigation

 		
 index

 		riss-doc 1 documentation »

Galaxy 101- Trimming your Illumina sequencing using Galaxy

Introduction

What is Galaxy?

Galaxy is a web-based interface that allows users to create complex
computational pipelines to analyze biological data. Galaxy is designed
to help you create reproducible workflows that can be used with multiple
datasets, shared with others and published. Common bioinformatics
software such as BLAST, BWA and GATK can be accessed though the Galaxy
interface along with many other tools for converting between different
formats, manipulating data and basic statistics.

Galaxy at MSI

There are many instances of Galaxy, the one available to you though MSI
is maintained by MSI and connects directly to the computational
resources at MSI. The tools available will vary depending on which
instance of Galaxy you use. While transferring workflows from one
instance of Galaxy to another is easy, MSI has no control over which
tools are available in other Galaxy instances. If there is a tool that
you have used in a different instance of Galaxy that is not available in
the MSI instance send a request to help@msi.umn.edu.

Scope of this tutorial

		Give participants experience with the basic functionality of Galaxy
		Accessing Galaxy at MSI

		Galaxy layout

		Loading files into current Galaxy history

		Creating a workflow

		Sharing histories and workflows

		Where to get more information

		Basic processing and quality control on Illumina sequencing data
		Evaluating read quality

		Adapter removal

		Low quality read removal

		Read trimming

Where to get more information

		From other Galaxy users: https://wiki.galaxyproject.org/

		From MSI: https://www.msi.umn.edu/content/bioinformatics-analysis

Getting Started With Galaxy

Sections of Galaxy

Galaxy has three main sections; Tools Pane, Histories Pane, and the

Center Pane.

		Tools Pane
		Found on the left side of the browser.

		Contains all of the different tools that can be used within
Galaxy. These include tools that do simple text manipulations and
arithmetic to tools with more complex functions specific to the
analysis of next generation sequence data and statistics.

		Combining these different tools allows you to analyze your data.

		Tools are organized into several heading or they can be found
using the search bar at the top of the pane.

		Histories Pane
		Found on the right side of the browser.

		Contains the history of the tools you have used and the results.

		Histories can be saved, shared and turned into workflows that can
also be saved, shared and reused.

		Center Pane
		Found in the center of the browser.

		When using a tool the options for that tool and information about
the tool will be in the Center Pane.

		Clicking on the Eye Icon in the history pane will give of view
of the data in the Center Pane.

Accessing Galaxy at MSI

		Open a web browser and navigate to the MSI Galaxy
galaxy.msi.umn.edu

		Log in with your MSI username and password

		Tools Pane

		Center pane

		History Pane

		The side panels can be collapsed via arrows in the bottom corner to
provide a better view of the Center Panel.

		Search bar to find tools.

		The total quantity of data your group has stored in Galaxy is
displayed in the top right corner.

		You can always get back to the main screen using Analyze Data in
the top menu bar.

![alt text](/galaxy101_1.png “Image 1”)

Import FASTQ Files From Data Library

Getting data into MSI Galaxy- Data Libraries

		
Sequencing Data from UMGC

Sequencing data from UMGC can be accessed in Galaxy though the

creation of a data library. In general, each PI with access to Galaxy
account will have one data library in Galaxy that can contain many
different pieces of data. When you or your PI receives an email from
UMGC indicating that your sequencing data is available you can have
that data moved into your PI’s Galaxy data library by forwarding the
email to help@msi.umn.edu with a request to add the data to Galaxy.
You can then access the sequencing data library from the Shared
Data tab in the blue bar at the top of the Galaxy page. If your PI
doesn’t currently have a data library a new one will be created the
first time you request to have data added to Galaxy.

		
External Data

The Get Data heading in the Tool Pane is a good resource for

obtaining external data from public databases such as the UCSC genome
browser and SRA. You can also upload small (<2GB) files directly from
your computer. When data is uploaded using the tools under Get Data
they will appear in your current history.

		
Larger External Datasets

Data files that are larger than 2GB will have to be placed into a

data library to be accessed in Galaxy. In your groups home directory
there is a galaxy folder (/home/yourGroup/galaxy). To get data into
your PI’s data library move it into the galaxy folder in your groups
home directory then send a ticket to help@msi.umn.edu with the
location of the data to be added to your PI’s data library.

		At the top of the screen select Shared Data then in the menu Data
Libraries

		Select RISS-tutorial-galaxy101 from the list of data libraries

		Expand the FastQ folder and check the boxes next to the first two
files, Tutorial_file_R1.fastq and Tutorial_file_r2.fastq

		Select Go next to Import to current history below the data files
to move the data to your current history.

		Select Analyze Data in the blue bar to move back to the main Galaxy
view.

[image: image]

Set File Attributes

Attributes

Setting the file attributes will tell the different tools in Galaxy

what format the data is in. Galaxy does some work to auto detect the
files that can be used as inputs for different tools. If you find that
the file you want to use as an input is not available in a drop down
menu check to see if you have set the file attributes. Information about
different files types can be found though the **USCS genome
browser** [http://genome.ucsc.edu/FAQ/FAQformat.html] and from
**Current Protocols in
Bioinformatics** [http://onlinelibrary.wiley.com/doi/10.1002/0471250953.bia01bs45/full].

Special note about FASTQ

FASTQ files contain quality information for each sequenced base

encoded using the characters found in the fourth line of each block. The
preferred encoding for MSI Galaxy is Sanger. If you are looking at
Illumina data created in 2012 or later your FASTQ files already using
the Sanger encoding. If you sequencing was done before 2012 then you
should use FASTQ Groomer to convert to the Sanger encoding (Sanger &
Illumina 1.8).

Canonical genomes

Both Mouse (mm9) and Human (hg19, hg18) have canonical versions in

Galaxy. For most NGS analyses you will want to use the canonical
versions of the genome if available. These genomes contain only the
standard chromosomes (i.e., somatic, sex and mitochondria) and do not
include parts of the genome that have unknown locations, haplotype
specific chromosomes or random chromosomes.

		In the History Pane click on the pencil icon next to
Tutorial_file_R2.fastq. This will bring up the files Attributes in
the Center Pane.

		This is a human dataset so select Human hg19 in GATK canonical in
the drop down menu under Database/Build:. You can scroll or if you
begin to type “hg19” then you will only see the options with “hg19”
in the name.

		Click Save

		Switch to the Datatype tab by selecting it from the top of the
Center Pane

		Select fastqsanger from the drop down menu. You can scroll or if
you begin to type “faster” then you will see the options with “fastq”
in the name. NOTE: do not select fastqcsanger.

		Click Save

		Change the attributes and data type for the other fastq file to
match.

[image: image]

Evaluating FASTQ File Quality

FASTQ Format and Quality Scores

This tutorial is geared towards Illumina data in FASTQ format, other

sequencing methods (i.e., Roche 454) may produce reads with a different
patterns of errors or a different file format. Quality control tools for
other NGS data types can be found under the NGS: QC and manipulation
heading in the Tool Pane.

A sequence record in a FASTQ file consist of four lines 1) an @accession
line 2) sequence data 3) place holder line 4) quality score
line. FASTQ quality scores encode the estimated chance of a miscalled
base at each location. Single ASCII characters are used to encode the
quality scores, as opposed to raw numbers, so that there is always a
1-to-1 relationship between the number of bases in the read and the
length of the quality score. Quality score reflect the probability that
a base call was incorrect, calculated as a Phred quality score (Phred Q
= -10:math:log(p), where is the probability that the
inferred base is incorrect). The higher the Phred score the smaller the
probability that the base call was incorrect. A Phred score of 10
indicates a 1 in 10 chance of an incorrect base call while a oared score
of 50 indicates a 1 in 100,000 chance of an incorrect base call.

Unfortunately, FASTQ files from different sources sometimes encode

quality scores slightly differently. Sanger and current Illumina FASTQ
format uses a Phred+33 encoding, which means that the lowest Phred score
of 0 is encoded as ASCII character 33 (!), while Solexa and pre-2012
Illumina software uses Phred+64 encoding (Phred 0 encoded as @). But in
all cases, the higher the Phred quality scores the higher quality the
base call. In Galaxy you can use FASTQ Groomer to ensure your data is in
the Sanger/Illumina 1.8 encoding.

FastQC Metrics

		
Basic Statistics

Gives the name of the input file, encoding used for the quality

score, total sequence count, average sequence length and GC content
(%).

		
Per Base Sequence Quality

A important figure showing the average quality score at each

position across all reads. In general, quality scores are lower at
the start and each of reads. Sudden dips in the middle of a read can
signify failed cycles in the sequencing run (machine errors).

		
Per Sequence Quality Scores

Histogram charting the average quality across a read. Low quality

reads can be removed but a majority (at least 75%) of you data should
be of high quality.

		
Per Base Sequence Content

The frequency of each nucleotide at each position across all of the

reads. Extremely high nucleotide bias can be a sign of trouble, short
stretches with high bias can be caused by the presence of linkers,
barcodes or adapter contamination. There is usually some minor bias
in the first 11-13bp of RNA-seq data due to not-quite random hexamer
sequence priming but this bias is accounted for in the downstream
analysis.

		
Per Base GC Content

Average GC content (%) at each position along the reads. GC content

should be stable across the read and large changes indicate issues.

		
Per Sequence GC Content

This figure will show you both the theoretical distribution of GC

content and the GC content of your data. These distributions should
be similar.

		
Per Base N Content

Rate of ambitious base calls (N) for each position along the reads.

This count should be very low (<10), to many N calls indicates issues
with the sequencing run (usually machine errors).

		
Sequence Length Distributions

Histogram of the sequence lengths. Illumina reads that have not

been trimmed will all have the same length, once trimmed you want a
majority of your reads to be full length and a small percentage to be
shorter.

		
Sequence Duplication Levels

Frequency of exact sequence duplicates in the dataset. High

duplication rates can be caused by PCR artifacts and/or low library
diversity. Low levels of duplication can be removed but, high levels
indicate issues with the library preparation.

		
Overrepresented Sequences

A list of overrepresented sequences if they exist in the data.

These are the sequences that are contributing to the data in the
Sequence Duplication Level graph.

		
K-mer Content

Shows the amount (% of reads) and sequence of overrepresented

K-mers. High levels of overrepresented sequences usually arise from
adapter contamination and these levels should drop after adapters are
removed from your data.

Running FastQC

		From the Tools Pane select the NGS: QC and manipulation header.

		Select the FastQC: Read QC tool.

		Alternatively, use the search bar at the top of the tool pane to
find FastQC.

		Select the file to analyze from the drop-down menu:
Tutotial_file_R2.fastq

		Rename the output file to something meaningful such as
``Precleaning R2”.

		Select Execute

		Repeat this process for the Tutorial_file_R1.fastq file changing
the name of the output to reflect the use of the new file
(``Precleaning R1”).

[image: image]

[image: image]

Viewing and Understanding FastQC results

In the following review of the FastQC results we will present the result
of both the Left (_R1) and Right (_R2) FASTQ files side by side. We do
this to accentuate the differences between the two datasets and to
highlight the importance of checking the quality of both sets of reads.
It is normal for one set of reads to be considerably different in
quality from the other. Usually, the Left reads are higher quality due
to being sequenced first.

		In the History Pane select the Eye Icon next to the name of the
output from using the FastQC: ReadQC tool. This will allow you to
view the results in the Center Pane.

[image: image]

		Scroll to the ``Per base sequence quality”.

		Note how the quality of the reads drops towards the 3’ ends of the
reads

		Dips like this are indicative of a failed cycle on the sequencing
machine.

[b]0.5 [image: image]

[b]0.5 [image: image]

		Scroll to ``Per sequence quality scores”.

		Note the bimodal distribution with a population of low quality reads.

[b]0.5 [image: image]

[b]0.5 [image: image]

		Scroll to ``Sequence duplication levels”.

		Note the presence of duplicated reads, here up to 5 copies. Some
duplication is expected and this is a relatively low level of
duplication. Large number of sequences in the 10+ column would
indicate issues.

[b]0.5 [image: image]

[b]0.5 [image: image]

		Scroll down to ``Kmer content”

		Note the presence of over enriched k-mere at the 3’ end of the reads,
this is indicative of 3’ adapter contamination. Adapter sequences may
also be identified as an “Overrepresented Sequence”.

[b]0.5 [image: image]

[b]0.5 [image: image]

Cleaning FASTQ Datasets

Why Is Cleaning Required?

Low Quality Tails and Failed Cycles

For a variety of reasons, including decay of reagents as they sit on

the sequencing machine, the quality of base calls tends to decrease as
sequencing progresses. As a result the 5’ ends will tend to have higher
quality than the 3’ ends and forward reads will tend to have better
quality than reverse reads. Low quality base calls can impair the
accuracy of mapping algorithms so it is important to to remove them. Low
quality tails can be removed though the removal of the 3’ ends from all
of the reads but, that would result in the removal of many reads that
were of higher quality as well. More sophisticated methods only remove
the tails that show evidence of low quality. In Galaxy there are tools
that can accomplish either style of read trimming.
| Cycles fail because of sequencing machine error, such as failure to
incorporate a base, or failure to image a specific region. For most
analysis failed cycles can be ignored as they will not have large
effects.

Adapter Contamination

Illumina libraries consist of the DNA of interest (green) with ligated

adapter (red yellow) on the 5’ and 3’ ends to proved priming
site for the sequencing reactions. The forward adapter (left) provides a
region that binds to the Illumina flow cell plate (blue) and a region to
which the sequencing primer binds to start the sequencing reactions. The
reverse adapter (right) has the same structure with the addition of a
barcode sequence (yellow). Adapter contamination occurs when the DNA
fragment of interest is shorter than the length of the sequencing read.
This results in the opposite primer included in the sequence of the
final read, leading to adapter contamination.
| Removal of adapter contamination in Galaxy can be accomplished using
CutAdapt and the sequence of the primers.

[image: image]

Illumina TrueSeq adapters:

Forward: 5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

3’
| Reverse: 5’
GATCGGAAGAGCACACGTCTGAACTCCAGTCACNNNNNNATCTCGTATGCCGTCTTCTGCTTG 3’

Remove Low Quality Tails

		Open the NGS: QC and manipulation section of the Tool Pane, or use
the search bar.

		Select FASTQ Quality Trimmer

		In the FASTQ drop down menu select the Right FASTQ file,
Tutorial_file_R2.fastq

		Set Trim ends to 3’only.

		Set Window size to 3.

		Set Quality Score to 20.

		Select Execute.

		Repeat these steps on the Left FASTQ file. To rerun a tool from your
history you can select the underlined name of the output in the
History Pane, expanding the box. Then select the Recycle Icon which
will load the tool with the setting preloaded. For FASTQ Quality
Trimmer instance you will just need to change the name of the input
files.

[image: image]

[image: image]

Remove Adapter Contamination

		Select FASTA manipulation from the Tool Pane.

		Select Cutadapt to bring up the tool options in the Center Pane.

		Under Fastq file to trim: select Right (_R2) FASTQ file that has
already been trimmed for quality.

		Select Add new 3’ Adapters

		Under Choose 3’ Adapters select “TrueSeq Universal Adapter Reverse
Complement”

		Set “Minimum overlap length” to 5

		Set “Output filtering options:” to ‘’Set Filters’’.

		Set “Minimum length” to 25

		Select Execute.

		Run CutAdapt again (Recycle Icon) using the Left (_R1) quality
trimmed FASTQ file. Use “TrueSeq Index Adapter” as the 3’ adapter.

[image: image]

		Cutadapt will produce a report as well as the cleaned up FASTQ
file.

		Open the Cutadapt report by selecting the Eye Icon in the history
pane.

		Note the length distribution of removed sequence.

Resyncing Left and Right FASTQ Files

Trimming and other quality control measures can result in the removal of
reads from the dataset. Additionally, some processing steps may change
the order of the reads in the dataset. Many programs expect to find the
same read names in the same order for both the Left and Right FASTQ
files. To ensure that the read names are in ‘sync’ MSI Galaxy has the
resync: Paired-end resynchronization tool.

		Select the MSI header from the Tool Pane.

		Select resync: Paired-end resynchronization.

		Select as Input 1: the quality and adapter trimmed Right FASTQ file

		Select as Input 2: the quality and adapter trimmed Left FASTQ file

		Select Execute

[image: image]

Review FastQC Results From Cleaned Datasets

In this section we will compare the results from FastQC between the
original FASTQ file and the quality and adapter trimmed FASTQ files. You
should always examine the results post FASTQ file clean up before moving
forward with more complex analysis. Here we will be showing both the
results from the original FASTQ files as well as those from the quality
and adapter trimmed FASTQ files.

		Use FastQC to examine the quality statistics for the quality and
adapter trimmed FASTQ files. Select the Eye Icon to view the
results.

		Scroll down to “Per base sequence quality”. Note the improvement in
the average quality of the read tails.

[image: image]

		Scroll down to ``Per sequence quality scores”. Verify removal of
low quality peak.

[image: image]

		Scroll down to “Sequence Length Distribution”. Note the degree of
trimming that has occurred.

[image: image]

		Scroll down to “Kmer Content”. Note the absence of overrepresented
tail k-mers.

[image: image]

Workflows

Creating a Workflow

The ability to create, reuse, share and publish workflows is on of

Galaxy’s largest strengths. Creating workflows allows you and anyone you
want to collaborate with to exactly recreate analysis. You can think of
workflows as your computational lab notebook, they are how you document
your computational work. Workflows are also handy when you have to clean
up your Galaxy space. Saving the raw input data and the workflow that
leads to a final result allows you to delete the intermediate files yet
retain the ability to recreate the entire analysis at any time.
Workflows can be extracted from histories or created from scratch.
Either method will result in a useable workflow so how you choose to
build one is up to you.
| Workflows are made up of connected tools, each tool is represented as
a box and data moving from one tool to another is represented by the
arrows. The inputs required for the tool can be found above the
horizontal line in the box while the possible outputs are found below
the line. Outputs from each tool can be saved and/or used as in the
input for the next tool. Selecting the box will display the settings
associated with the tool allowing you to preset parameters to reuse each
time the workflow is run.

Extract Workflow from Current History

		Select the Gear Icon from the top of the history pane.

		Select Extract Workflow from the menu.

		In Workflow name enter “QC and Cleanup”.

		Select Create Workflow.

[image: image]

View and Edit the Workflow

		Select Workflow from the top bar.

		Select the workflow that you just created and select Edit from the
drop down menu.

		The initial view of the workflow may be very messy. You can drag the
boxes around on the screen to make the workflow easier to interpret.
You can also move the blue box in the bottom right corner to view
other sections of the workflow.

		The workflow will follow the same logic as the history you created it
from. Can you trace the steps you took for each initial FASTQ file
though the QC and clean up process?

		Select a FastQC:Read QC box which will open the Details Pane on
the right. Is this for the Left or Right reads?

		Select the Input dataset box that is attached (connected arrows) to
the FastQC:Read QC box you just viewed.

		Label the Input dataset either Left or Right to correspond with the
information from the FastQC:Read QC box you just viewed.

		Do the same for the other Input dataset.

		The next time you need to run QC and clean up FASTQ data you might
need to use different adapter sequences. Selecting the Cutadapt box
to view the Details Pane.

		In the Details Pane for Cutadapt change the adapter sequence to
“Set at runtime” using the small arrow next to Choose 3`
Adapter. Do the same for the Cutadapt box associated with the
other Input dataset.

		Select the Gear Icon then Save from the menu.

[image: image]

Running a Workflow

		Select Analyze Data from the top bar to return to the main Galaxy
screen.

		Create a new history by selecting the Gear Icon then Create New
from the menu.

		Name the history “Workflow Test”

		Import “Tutorial_file_workflow_R1.fastq” and
“Tutorial_file_workflow_R2.fastq” into the current “Workflow Test”
history from the data library(Section [sec:dataLib]. Don’t forget to
set the file attributes (Section [sec:attributes]).

[image: image]

		Select Workflow from the top bar to display your saved workflow
from the data library.

		Select the QC and Cleanup workflow you just created then select
Run from the drop down menu.

		In the Center Pane select the “_R1.fastq” file for the Left Read
Input using the drop down menu.

		Select the “_R2.fastq” file for the Right Read Input using the
drop down menu.

		Scroll down the the Cutadapt steps and select the appropriate
adapters.

		Scroll to the bottom of the main view and select Run workflow

		Select Analyze Data in the top bar to return to the main Galaxy
view.

		You will be able to watch the progress of the workflow in the History
Pane.

[image: image]

Sharing Workflows and Histories

It is possible to share workflow and histories with other Galaxy users.
This allows you to share data, results and methods with collaborators or
anyone who might want to recreate your methodology. Galaxy histories and
workflows can be shared via a link or they can be saved as stand alone
files that can then be uploaded to any Galaxy instance.

Share a History

		To share your current history select the Gear Icon then Share or
Publish

		To share the history though a web link select Make History
Accessible via Link. You can share this link with anyone who has
access to Galaxy at MSI allowing them to view the history and the
data in it.

		Make History Accessible and Publish will also create a link to the
history but it will also publish the history making it public to
anyone with access to Galaxy at MSI under the Shared Data tab.

[image: image]

Share a Workflow

		When you select a workflow from the list one of the options is Share
or Publish

		To share the workflow though a web link select Make Workflow
Accessible via Link. You can share this link with anyone who has
access to Galaxy at MSI allowing them to view and use the workflow.

		Make Workflow Accessible and Publish also creates a link to the
workflow but it will also publish the workflow making it public to
anyone with access to Galaxy at MSI under the Shared Data tab.

		You can also download a workflow to be imported into another Galaxy
instance or to be archived by selecting Download or Export.

[image: image]

Cleaning Up Histories: Deleting Data From Galaxy

Galaxy is a shared resource so the amount of data you and your group

can have in Galaxy is limited. We estimate that even a relatively simple
RNAN-seq analysis will use 4-5 times the storage of the raw sequencing
files. Many of these files are intermediate and can be discarded once
the analysis is complete. Also, since Galaxy allows you to create
workflows it is easy to recreate intermediate files if they are needed
later. It is good practice to extract workflows from histories then
discard the histories once you have completed the analyses.
| Your groups current Galaxy usage is displayed in the top bar on the
far right. You can view the size of your different Galaxy histories when
you view you saved Galaxy histories using the Gear Icon and below the
name of your current history. If you delete a Galaxy history before you
extract a workflow you will not be able to do so later.

Deleting Intermediate Files and Histories from Galaxy

		Select Analyze Data in the top bar to get to the main Galaxy view.

		Select the Gear Icon and then Saved Histories from the menu.

		Select the history you created when you tested your workflow then
select Switch to open the history in the Galaxy History Pane.

		To delete specific pieces of data from a Galaxy history you can
select the X.

		Notice that when the data set is deleted that the size of the history
does not change. This is because Galaxy has a recycling bin type
function.

		To permanently delete a dataset first unhide the hidden datasets by
selecting the Gear Icon then Include Deleted Datasets.

		Select the here link displayed in the history pane for the data you
would like to delete. This will actually reduce the size of the
history.

[image: image]

		You can delete an entire history from the same page where you can
view your saved histories.

		Select the Gear Icon then Saved Histories

		Select the history that you want to delete. Delete Permanently will
remove the history immediately while Delete will place the history
in the recycling bin.

		While data can be restored from the recycle bin MSI will clear out
the recycle bin monthly so if you choose to delete a history you
should just Delete Permanently.

[image: image]

 © Copyright 2014, RISS.
 Created using Sphinx 1.3.5.

